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Abstract

We consider a system of Becker–Döring equations modified in the manner
of Dreyer & Duderstadt (2006 J. Stat. Phys. 123 55). We analyse the
case of size-independent rate coefficients in the case of weak fragmentation
(aggregation-dominated). We use matched asymptotic expansions to construct
approximations to the cluster size-distribution as it evolves from purely
monomeric initial data to the equilibrium solution in which the typical cluster
size is extremely large. We compare the results with earlier calculations of a
similar limit in the standard Becker–Döring system, and find a similar sequence
of timescales with similar profile shapes; however, there are notable differences
in the kinetic behaviour within timescales due to the modified system having
a fragmentation rate which depends on the total number of clusters present in
the system.

PACS numbers: 64.60.−Q, 6490.+b, 05.90.+m

1. Introduction

In 1935, Becker and Döring [3] constructed a mathematical description of the nucleation
process which enabled the calculation of the rate of creation of cluster nuclei in steady-state
which occurs due to the simultaneous processes of condensation and evaporation of a single
monomer unit at a time. The original formulation of this model considered a box into which
monomers were continually added so that the monomer concentration remained constant. This
can be interpreted as a phase transition in which a supersaturated gas is condensing to form
liquid droplets at constant pressure.

The constant mass formulation proposed by Penrose and Lebowitz [19] considers a
fixed amount of matter in a box of fixed volume. This leads to the ‘constant mass’ or,
equivalently termed ‘constant density’ formulation. As the transition proceeds from the
pure monomer state to a developing population of clusters, the concentration of monomers
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decreases. However, from a thermodynamic point of view, the Lyapunov function for the
system originally proposed has an unusual form. Dreyer and Duderstadt find that by modifying
the aggregation or fragmentation rates slightly, a modified Becker–Döring system is obtained
which has a Lyapunov function consistent with the free energy that one would expect from
thermodynamic principles. This modified system has been analysed by Hermann et al [12].

Part of the success of the Becker–Döring equations is their versatility, and ease of
modification to apply to more general scenarios, for example, multicomponent nucleation
[23, 24], the presence of inhibitors and multiple morphologies of crystal [5, 21], the presence
of dimer-cluster interactions in addition to those between clusters and monomers. However,
their complexity leads to considerable difficulty in solving the resulting systems of equations
[9, 13, 22], and so any analytic methods which provide accurate approximations are especially
welcome.

The most familiar of these is the relationship between the Becker–Döring equations and
the Lifshitz–Slyozov–Wagner (LSW) theory of late-stage droplet formation, as discussed, for
example by Penrose [18], Niethammer [15], and Niethammer and Pego [16, 17]. Farjoun and
Neu use this LSW theory [11] in analysing a model of the end of an isothermal nucleation
process in a closed system. Their asymptotic calculations rely on a small supersaturation.
More recently, Fajoun [10] has used asymptotic techniques to analyse the nucleation due
to a thermal quench in which clusters grow according to Becker–Döring kinetics. Further
asymptotic analyses of nucleation over a barrier are described by Neu et al [14] and Bonilla
et al [6].

1.1. The standard Becker–Döring system with constant monomer concentration

The original Becker–Döring equations for nucleation were proposed in 1935 [3]; in this
formulation only cluster-monomer reactions are permitted (that is, Cr + C1 � Cr+1, where Cr

represents a cluster of size r). We write

dcr

dt
= Jr−1 − Jr, (r � 2), Jr = arcrc1 − br+1cr+1, (r � 1), (1.1)

where cr(t) is the concentration of clusters of size r at time t (that is, [Cr ]), ar is the rate of
the forward (aggregation) process and br+1 is the rate of the reverse (fragmentation) process.
In [3] a constant monomer concentration (c1) was assumed. The steady nucleation rate (Jnuc)

can then easily be computed as

1

Jnuc
=

∞∑
r=1

1

arQrc
r+1
1

. (1.2)

Here Qr is the partition function, which satisfies Q1 = 1 and arQr = br+1Qr+1.

1.2. The standard Becker–Döring system with constant total mass

A more difficult problem was posed by Penrose and Lebowitz [19] who proposed that as
clusters nucleate, the monomer concentration should decrease and, so they formulated the
constant total mass system in which (1.1) is augmented by

dc1

dt
= −J1 −

∞∑
r=1

Jr . (1.3)

With this condition, the total mass in the system � = M1 = ∑∞
r=1 rcr is time-independent.
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Both formulations support a unique equilibrium solution of the form c
eq
r = Qrc

r
1.

Furthermore, each formulation also possesses a Lyapunov function (free energy) which
monotonically decreases in time

VBD =
∞∑

r=1

cr

(
log

(
cr

Qrc
r
1

)
− 1

)
, VPL =

∞∑
r=1

cr

(
log

(
cr

Qr

)
− 1

)
. (1.4)

The former (VBD) is for the original system (1.1) with c1 fixed; and the latter (VPL) applies to
the constant total mass system (1.1) with (1.3). A more detailed introduction to the Becker–
Döring equations can be found in [20].

1.3. The modified Becker–Döring system with constant mass

The problem we study in this paper is a constant mass Becker–Döring system in which the
fragmentation term has been modified in line with the reformulation proposed by Dreyer and
Duderstadt [8], that is,

dc1

dt
= −J1 −

∞∑
r=1

Jr (1.5)

dcr

dt
= Jr−1 − Jr (1.6)

Jr = arc1cr − br+1N(t)cr+1. (1.7)

Here we define the general kth moments by

Mk(t) =
∞∑

r=1

rkcr , (1.8)

so that the zeroth moment, which is the total number of clusters in the system, is given by

N(t) = M0(t) =
∞∑

r=1

cr . (1.9)

The inclusion of this in the quantity in the fragmentation term in (1.7) is what makes (1.5)–(1.7)
distinct from the standard Becker–Döring equations [19]. The number N evolves according to

dN

dt
= −

∞∑
r=1

Jr . (1.10)

The system (1.5)–(1.7) has several useful properties which are important in applications.
First, the first moment of the distribution, M1 (1.8) is conserved. This quantity is referred to
as the ‘mass’ or ‘density’ of the system. Second, the quantity

V ({cr}) =
∞∑

r=1

cr log

(
cr

QrN

)
, (1.11)

is a Lyapunov function for the system; here Qr , defined by

arQr = br+1Qr+1, Q1 = 1, (1.12)

is the partition function. Equation (1.11) implies

dV

dt
= −

∞∑
r=1

Jr log

(
arcrc1

br+1cr+1N

)
, (1.13)

which is negative at all non-equilibrium points since (x − y)(log x − log y) � 0.
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There is a family of solutions of the form

ceq
r = NQr

(c1

N

)r

, (1.14)

which automatically satisfies Jr = 0 and c1 = c1. The quantities N and c1 then need to
be found to satisfy the mass condition � = ∑∞

r=1 rc
eq
r and the self-consistency condition

N = ∑∞
r=1 c

eq
r . This pair of constraints can be rewritten as

� =
∞∑

r=1

rNQr

(c1

N

)r

, 1 =
∞∑

r=1

Qr

(c1

N

)r

, (1.15)

or, by introducing z = c1/N , can be expressed as a sequence of single-variable problems, for
z,N , and then c1, via

∞∑
r=1

Qrz
r = 1, N = �∑∞

r=1 rQrzr
, c1 = Nz. (1.16)

As noted by Ball, Carr and Penrose [2], it is possible that such a system does not have a
solution. For example, if the aggregation and fragmentation rates (ar , br) are such that the
left-hand side of (1.16) is the power series expansion of 1

2 (1 − √
1 − z), then no real value

of z (in 0 � z � 1) can satisfy the equation. There is then a maximum (or critical) mass
which the system can support at equilibrium. This lack of an equilibrium solution is known as
‘metastability’. If, at t = 0, there is a mass in excess of this critical value, then the excess is
converted into clusters of ever increasing size. However, the problem considered here, where
the rate constants are size-independent, does not suffer from these metastability problems.

In the following section we analyse this system of equations in the asymptotic limit of
small fragmentation with initial data of the form c1(0) = �, cr(0) = 0 for all r � 2. This
corresponds to a phase transition, since the system is initiated from the pure monomer state,
and the rate coefficients are heavily biased to the formation of clusters with large size, since
the aggregation rates are much larger than the fragmentation rates. Using matched asymptotic
expansions it is possible to construct a solution and follow the behaviour of the system over
several timescales and determine the evolution of the cluster size distribution as it evolves
towards the equilibrium solution.

1.4. The modified system with constant monomer concentration

The above system is a constant mass formulation; as with the standard Becker–Döring
equations, it is also possible to pose a constant monomer concentration form of the problem.
In this case we have

dcr

dt
= Jr−1 − Jr, Jr = arcrc1 − br+1Ncr+1, (1.17)

where the fluxes Jr are defined for all r � 1 and the concentrations given by (1.17) only
for r � 2 and c1 is a given parameter. Although this form of the problem is potentially
less relevant in physical applications, it provides an instructive mathematical problem as a
precursor to the analysis of the more demanding constant mass problem (1.5)–(1.7).

In the formulation (1.17) both the number of clusters and the total mass in the system
vary. The quantities N = M0 = ∑∞

r=1 cr and � = M1 = ∑∞
r=1 rcr satisfy

dN

dt
= J1,

d�

dt
= J1 +

∞∑
r=1

Jr . (1.18)

In the standard Becker–Döring system, the constant monomer concentration had a one-
parameter family of steady-state solutions, in addition to the equilibrium solution. However,
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due to the inclusion of N(t) in this modified formulation (1.17), the only time-independent
solution is the equilibrium solution. The time-dependence of N also hinders the finding of
Lyapunov function (free energy) for the system. The candidate function

Vtrial =
∞∑

r=1

cr log

(
crN

r

Qrc
r
1

)
+ f (N), (1.19)

does not qualify since

dVtrial

dt
= J1

N
(N + � + N log N + f ′(N)) +

∞∑
r=1

Jr log

(
br+1N(t)cr+1

arc1cr

)
. (1.20)

Whilst the sum in (1.20) is negative-definite, the remaining term (involving J1) cannot be
made so, since both N and � are time-dependent. Introducing �-dependence into f (·) would
also introduce

∑
r Jr into dVtrial/dt .

1.5. The modified Becker–Döring system with size-independent rate coefficients

Here we analyse the case ar = a, br = b and, for simplicity, we formulate the problem
using a timescale in which a = 1, and b = ε. The partition function is given by
Qr = (a/b)r−1 = ε1−r . Later we consider the kinetics of aggregation in the case ε � 1 and
where � = O(1).

In section 2 we study the constant monomer formulation of the problem (1.17) in which
c1 is given. We thus aim to solve

dN

dt
= c2

1 − εNc2,
dcr

dt
= c1cr−1 − c1cr − εNcr + εNcr+1. (1.21)

In the original formulation, there is a one-parameter family of steady-state solutions for this
case given by Jr(t) = Jsss for any value of Jsss. Since the modified kinetic equations (1.17)
include N(t), there can only be a steady-state if N(t) itself asymptotes to a constant. However,
dN/dt = J1, so this can only be steady if Jr = 0 for all r, which is the equilibrium solution.
Hence there are no steady-states other than the equilibrium solution.

We then proceed, in section 3, to analyse the kinetics of the constant mass formulation of
the modified Becker–Döring system (1.5)–(1.7); that is,

dcr

dt
= c1cr−1 − c1cr − εNcr + εNcr+1, (1.22)

dc1

dt
= N(εN − c1 − εc1) − c2

1 + εNc2,
dN

dt
= N(εN − c1 − εc1). (1.23)

The Lyapunov function for the constant mass case is then

V =
∞∑

r=1

cr log

(
cr

QrN

)
=

∞∑
r=1

cr log cr − N log N + (� − N) log ε. (1.24)

However, for the remainder of this section, we make no assumption on the size of ε and
calculate the equilibrium solution. In both cases, the equilibrium solution has the form

N = ε�

(1 + ε)
, ceq

r = ε2�

(1 + ε)r+1
, Veq = � log

ε

1 + ε
, (1.25)

hence the average cluster size is �/N = ε−1 + 1.
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1.6. The original constant mass system with size-independent rate coefficients

For the aggregation-dominated form of the standard constant-mass formulation (1.1)–(1.3),
an asymptotic solution of the evolution of the cluster-size distribution has been constructed in
section 4 of [22]. We now summarize the relevant results of that paper. To ease the comparison
of the original system with the modified system considered in section 3, we transform the
results quoted in [22] using ar = 1, br = ε2 � 1 for all r (rather than br = ε � 1
which is used in [22]). We impose initial data in which all material is in monomeric form
(c1(0) = � > 0, cr (0) = 0∀r > 1), the solution passes through four timescales.

During the first timescale (T 1), t = O(1) and nearly all the monomer is exhausted
as clusters are created (with distribution cr = (�(r − 1)/er!)). The second (T 2) is also an
O(1) timescale but shifted by a time of (2e/�) log(1/ε) over which the monomer concentration
saturates to an O(ε2) level. During the third timescale (T 3), t = O(1/ε2), the size distribution
changes so that larger clusters are formed at the expense of the dissolution of smaller clusters.
Towards the end of this timescale, the size-distribution evolves according to the similarity
solution cr(t) ∼ �r e−r2/4t3/2

√
πt

3/2
3 where t3 = ε2t . Finally (T 4), when t = O(1/ε4), the

system approaches its equilibrium configuration in which

c
eq
1 = ε2

(
1 +

ε2

2�
− ε

�

√
4� + ε2

)
∼ ε2

(
1 − 1√

�

)
, (1.26)

ceq
r = ε2−2r cr

1 ∼ ε2 e−rε/
√

�, N eq ∼ ε
√

�. (1.27)

The number of clusters is defined by N = ∑∞
r=1 cr , and satisfies

dN

dt
= c1N − ε2(N − c1). (1.28)

In the first three timescales, N = O(1) and it falls to O(ε) in the last.
For size-independent rate coefficients, the free energy V = VPL (1.4) has the form

V =
∞∑

r=1

cr log cr − N + 2(� − N) log ε. (1.29)

Taken together with the equilibrium solution

cr = ε2(1−r)cr
1, with c1 = 2�ε2

2� + ε2 + ε
√

4� + ε2
∼ 1 − ε√

�
, (1.30)

equation (1.29) implies that

Veq ∼ −2� log
1

ε
− 2ε

√
�. (1.31)

We use the notation VT n to denote the free energy in the timescale T n. Over the four timescales,
this implies that the free energy difference VT n − Veq evolves such that

Vt=0 − Veq ∼ 2� log
1

ε
+ �(log � − 1), (1.32)

VT 2 − Veq ∼ 2�

e
log

1

ε
, (1.33)

VT 3end − Veq ∼ �√
πt3

(
2 log

1

ε
+ log

�

t3
√

π
− 2 − 1

2
γ

)
, (1.34)
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where t3 = ε2t is the scaled time variable in the third timescale, and γ is Euler’s constant
(γ ≈ 0.5772) [1]. We observe a rapid and considerable drop in V over the first timescale,
to 1/e of its initial value. There is almost no decrease over the second as only the monomer
concentration changes there. Near the end of the third timescale the leading order free energy
difference loses its O(log(1/ε)) magnitude, the difference reducing to O(1) in the fourth
timescale. However, considerable changes in the shape of the distribution function still have
to occur before equilibrium is achieved.

2. Asymptotic analysis—the constant monomer system

In this section we consider the constant monomer concentration system, that is, where c1 is a
prescribed constant. We analyse the case where both the aggregation and fragmentation rates
are size-independent, specifically, ar = 1 for all r, and br = ε � 1, so that fragmentation is
weak. The initial conditions we assume are cr(0) = 0 for all r � 2.

2.1. Timescale T1: t = O(1)

In this timescale, fragmentation is negligible at leading order, hence we aim to solve

dN

dt
= c2

1,
dcr

dt
= c1(cr−1 − cr). (2.1)

This has the solution N = c1 + c2
1t . At large times, the concentrations asymptote to

cr ∼ 1

2
c1 erfc

(
r − c1t√

2c1t

)
. (2.2)

This is because for r = O(1) the distribution becomes uniform cr = c1, and at large cluster
sizes, the distribution is slowly-varying in r, so can be approximated by the partial differential
equation

∂c

∂t
= c1

(
−∂c

∂r
+

1

2

∂2c

∂r2

)
, (2.3)

whose solution is (2.2).
This timescale ends due to the growth in N causing the fragmentation terms εNcr to

become significant. This occurs when t = O(1/ε), hence this is the next timescale we
investigate.

2.2. Timescale T2: t = O(1/ε)

For the second timescale we define

t2 = εt, r2 = εr, N = ε−1N2, cr (t) = c(r2, t2) = O(1), (2.4)

since at the end of T1, the front has reached cluster sizes of magnitude r = O(1/ε), and
the total number of clusters (N) has also reached O(1/ε), hence the introduction of the O(1)

quantity N2 = εN .
For r = O(1) we have

ε
dcr

dt2
= c1(cr−1 − cr) + N2(cr+1 − cr). (2.5)

This is a recurrence relation with the solution cr = A + B(c1/N2)
r . In order to match with

the solution at the end of T1, we impose B = 0 and A = c1. Hence at leading order, the
concentrations cr are simply given by cr = c1.
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The equation for the rescaled number of clusters N2 is

dN2

dt2
= c2

1 − N2c2, (2.6)

which is solved by N2 = c1(1 − e−c1t2). The concentrations of larger clusters (r = O(1/ε) or
r2 = O(1)) are determined by

∂c

∂t2
= (N2 − c1)

∂c

∂r2
+

1

2
ε(N2 + c1)

∂2c

∂r2
2
. (2.7)

The solution to the leading order problem is

c(r2, t2) = f (r2 − (1 − e−c1t2)), (2.8)

for some shape function f (·). Writing z = r2 − (1 − e−c1t2) and including the first-correction
term, (2.7) becomes

∂c

∂t2
= εc1

∂2c

∂z2

(
1 − 1

2
e−c1t2

)
, (2.9)

which has the solution

cr(t) = c(r2, t2) = 1

2
erfc

(
r2 − (1 − e−c1t2)√

2ε[2c1t2 − (1 − e−c1t2)]

)
. (2.10)

This describes a front which separates two regimes, cr = c1 for r < s(t) and cr ≈ 0 for
r > s(t). The front, which propagated to larger sizes at a rate r = c1t in T1, in T2 slows and
reaches a halt as r → 1/ε.

2.3. Timescale T3: t = O(1/ε2)

At the end of T2, the transition region slows as r2 → 1− becoming stationary in this limit.
The width of the region scales with

√
t2, hence a new timescale is required when t2 = O(ε−1),

which is equivalent to t = O(ε−2). Hence for the third timescale, T3, we define

r3 = εr, t3 = ε2t, N = ε−1N3, cr (t) = c(r3, t3) = O(1). (2.11)

The governing equations are

ε
dN3

dt3
= c2

1 − c2N3, (2.12)

which implies N3 = c2
1

/
c2 and, for r = O(1),

ε2 dcr

dt3
= c1(cr−1 − cr) +

c2
1

c2
(cr+1 − cr), (2.13)

hence

cr = c1 [1 − ε(r − 1)β(t3)] , (2.14)

for some function β(t3). This implies N3 ∼ c1(1 + εβ(t3)).
For r = O(ε−1) we have

1

c1

∂c

∂t3
= ∂2c

∂r3
2

+ β(t3)
∂c

∂r3
. (2.15)

Over this timescale, the system approaches equilibrium, which is given by c = c1 e−β(t3)r3 .
This implies that N3 = ∫ ∞

0 cdr3, and so β(t3) → 1 as t3 → ∞.

8
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3. Asymptotic analysis—the constant density system

We initiate the system from the configuration in which all mass is present in monomeric form,
that is

cr(0) = 0 for all r > 1, c1(0) = �. (3.1)

3.1. Timescale T1: t = O(1)

We assume that all quantities are O(1), and hence at leading order obtain
1

c1

dcr

dt
= cr−1 − cr ,

1

c1

dN

dt
= −N,

1

c1

dc1

dt
= −c1 − N. (3.2)

We transform by introducing a new timescale t1 defined such that (1/c1)∂t = ∂t1 , hence
t = ∫ t1

0 (1/c1(t
′
1))dt ′1, or

t = − e

�
(E1(1) − E1(1 − t1)) , (3.3)

where E1(·) is the exponential integral (for details see Abramowitz & Stegun [1],
equation (5.1.1)). Then N = � e−t1 , c1 = �(1 − t1) e−t1 and

cr =
(

t r−1
1

(r − 1)!
− t r1

r!

)
e−t1 . (3.4)

This timescale ends due to c1 becoming small, which occurs as t1 → 1, corresponding to
t → ∞.

Since E1(z) ∼ log(z) + γ + z + · · · as z → 0, the asymptotic expansion of (3.3) is
t = −(e/�) log(1 − t1) + O(1) so that as t1 → 1, we have t → +∞. In particular, c1 = O(ε)

when t = O(−(e/�) log ε). Hence at the end of T1,

N → �

e
, cr → �(r − 1)

er!
, (3.5)

and a new timescale is required for t = −(e/�) log ε + O(1).

3.2. Timescale T2: t = e
�

log
(

1
ε

)
+ O(1)

In this timescale, we find that the monomer concentration does not vanish, but rather saturates
at a small (O(ε)) value. We assume c1 = εm2,m2 = O(1) and find

dcr

dt
= ε (m2cr−1 − m2cr − Ncr + Ncr+1) , (3.6)

dN

dt
= ε(N2 − εNm2 − m2N), (3.7)

dm2

dt
= (N2 + Nc2 − m2N) − εm2(1 + N). (3.8)

Although t is large, m2 evolves at the same rate as c1 in T1; hence, this timescale is given by
t2 = t + (e/�) log ε. All cr(t) for r � 2 are fixed at the values they take at the end of T1; only
the monomer concentration evolves significantly on this timescale. In the limit of large t2, the
rescaled monomer concentration m2 approaches the value N + c2, according to

m2 = N + c2 + A exp(−Nt2) = 3�

2e
+ A e−�t2/e, (3.9)

for some constant A.

9
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In summary, at the end of T2, we have

c1 → 3ε�

2e
, cr = �(r − 1)

er!
, N = �

e
, (3.10)

and since all concentrations have reached pseudo-steady-states (but not the equilibrium
solution), the next timescale must be a longer timescale over which evolution occurs more
slowly.

3.3. Timescale T3: t = O(1/ε)

Since all concentrations are saturated at the end of T2, the new timescale T3 describes
much slower kinetic behaviour. In the above calculation (3.6)–(3.7), we observe that all
concentrations (except c1) are O(1) and evolving over a timescale of O(1/ε) hence we
introduce

t3 = εt, c1(t) = εm3(t3), t3,m3 = O(1). (3.11)

We require that c1 continues to be scaled with ε and is given by c1 = εm3 = ε(N + c2). Since
the equation for the monomer concentration can be written

ε
dm3

dt3
= N(N + c2 − m3) − εNm3 − εm2

3, (3.12)

we impose m3 = N +c2, that is, the monomer concentration m3 is slaved to N and c2. Although
this gives a similar result to that at the end of the previous timescale, there N and c2 were both
constants (3.9); note that in the timescale T3, both N and c2 vary with the new, slow, time
variable t3.

The other quantities evolve according to

dN

dt3
= N(N − m3 − εm3N) ∼ −Nc2, (3.13)

dcr

dt3
= N(cr+1 − 2cr + cr−1) + c2(cr−1 − cr), (3.14)

dc2

dt3
= N(c3 − 2c2) − c2

2. (3.15)

At the start of this timescale, most of the mass in the system is in clusters of size r = O(1).
It is not possible to describe fully the dynamics throughout this region, but we are able to
determine the behaviour at the end of the timescale, where all the concentrations become small
and, through aggregation, the mass in the system spreads to clusters of large size.

Whilst the equation (3.14) is valid for r = O(1), for larger aggregation numbers, a
simpler form is available. We treat the aggregation number as a continuous variable, and
replace (3.13)–(3.14) by

∂c

∂t3
=

(
N(t3) +

1

2
c2(t3)

)
∂2c

∂r2
− c2(t3)

∂c

∂r
,

dN

dt3
= −Nc2. (3.16)

We should now determine which term on the right-hand side of the first equation is dominant.
We assume that N dominates c2, and return later to verify this; the concentration profile will
be assumed to have the form

cr(t) = g(t3)f (η), where η = r

s(t3)
= O(1). (3.17)

10
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This relationship specifies the rescaled cluster size. We assume that s(t3) ∼ �/N(t3) since
this is the typical cluster size in the system. This condition yields the relation g ∼ 1/s2, which
is equivalent to the condition that � = M1 is O(1) and time-invariant.

Using dots to denote derivatives with respect to t3, the governing equation for the size-
distribution implies

t3ġ

g
f − t3ṡ

s
ηf ′(η) = t3g

s
	0f

′′ − 1

s
f ′(η), (3.18)

where 	0 = ∫ ∞
η=0 f (η) dη. At large times, both terms on the lhs (t3ġ/g and t3ṡ/s) asymptote

to O(1) constants; on the rhs, the dominant balance will be with the first term whilst the second
term vanishes in the large time limit. Imposing t3g ∼ s with g ∼ 1/s2 implies

s = t
1/3
3 (1 + o(1)), and g = t

−2/3
3 (1 + o(1)) as t3 → ∞. (3.19)

This leaves the equation

3	0
d2f

dη2
+ η

df

dη
+ 2f = 0, (3.20)

for the size-distribution function, which has the solution

f (η) = Cη exp

(
− η2

6	0

)
. (3.21)

The constant C is determined by the consistency condition 	0 = ∫ ∞
0 f (η) dη which implies

C = 1/3. The quantity 	0 is determined by mass conservation

� =
∞∑

r=1

rcr = gs2
∫ ∞

0
ηf (η) dη = 1

2

√
6π	

3/2
0 , (3.22)

hence 	0 = (2�2/3π)1/3 and so

f (η) = 1

3
η exp

(
− π1/3η2

(12�)2/3

)
. (3.23)

To summarize, towards the end of T3 (t3 → ∞), the solution behaves according to

cr ∼ t
−2/3
3 f (r/t

1/3
3 ), for r = O

(
t

1/3
3

)
,

cr ∼ 1
3 (r − 1)t−1

3 , for r = O(1),

c1 ∼ ε	0t
−1/3
3 , N ∼ 	0t

−1/3
3 .

(3.24)

The relation for cr , r = O(1) is due to f (0) = 0 and f ′(0) = 1
3 . For r = O(1), since

cr = O(1/t3) and N = O
(
t
−1/3
3

)
, the leading order terms in (3.14) are cr+1 − 2cr + cr−1 = 0,

which implies cr = (A + Br)/t . Equation (3.15) implies c3 = 2c2 hence A = −B, and we
find B = 1/3 by matching to the outer solution.

We recall that throughout T3, we have m = N + c2, so that c1 = ε(N + c2). Whilst at
the start of T3, N and c2 are of similar magnitudes, at the end, N, being O

(
t
−1/3
3

)
, dominates

c2, since c2(t3) = −(1/N) dN/dt3 = O
(
t−1
3

)
is a small correction term in comparison with

N(t3). This confirms the assumption on which the solution was derived.

3.4. Timescale T4: t = O(1/ε5/2)

The kinetics over this timescale is a simple extension of that observed towards the end of T3;
however, deducing the form of behaviour is not trivial. As well as assuming the form of N and
c1, we consider two parts of the size-distribution, cr(t). To determine the correct scalings for

11
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the new timescale we assume t
−1/3
3 = εp, that is t3 = ε−3p, then, balancing terms in the next

region, T4, we expect p = 1
2 . Hence we introduce

c1 = ε3/2m4, N = ε1/2N4, t4 = ε5/2t,

cr = ε3/2nr(t4), for r = O(1)

cr = εn(r4, t4) for r = ε−1/2r4, with r4 = O(1).

(3.25)

This scaling implies that N4 = ∫ ∞
0 n(r4, t4) dr4.

An expansion of equations (1.23) for N, and the difference N − c1 leads to

ε
dN4

dt4
= N4(N4 − m4 − εm4), (3.26)

dN4

dt4
= m2

4 − N4n2, (3.27)

hence m4(t4) = N4(t4) and these quantities vary with t4. After making use of m4 = N4,
equation (1.22) for r = O(1) implies

ε
dnr

dt4
= N4 (nr−1 − 2nr + nr+1) + O(ε), (3.28)

together with m4 = n1 = N4. Hence, at leading order, we have

nr(t4) = m4(t4) + (r − 1)B(t4), (3.29)

for some function B(t4) to be determined later (see equation (3.34)).
After making use of m4 = N4 once again, equation (1.22) for r = O(ε−1/2) implies

∂n

∂t4
= N4(t4)

∂2n

∂r4
2
, (3.30)

which determines the shape and evolution of the size-distribution. The different scales chosen
for cr for r = O(1) and r = O(ε−1/2) mean that the boundary condition for n(r4, t4) in the
limit r4 → 0 is, to leading order, n(0, t4) = 0. We also assume that n(r4, t4) → 0 as r4 → ∞.

Whilst equation (3.30) appears to be a conventional diffusion equation, the time-
dependence of N4 means that the distribution evolves in a nonstandard fashion. However,
we still expect to find similarity solutions of separable form. If we assume that n(r4, t4) =
g(t4)f (η) with η = r4/h(t4) then we find N4 = g(t4)h(t4)	0 where 	0 = ∫ ∞

0 f (η) dη; so for
(3.30) to yield a separable solution for f (η) requires h(t4) = t4g(t4). Conservation of density

� =
∫ ∞

0
r4n(r4, t4) dr4, (3.31)

implies g(t4)h(t4)
2 = 1, hence h(t4) = t

1/3
4 , g(t4) = t

−2/3
4 and m4 = N4 = 	0t

−1/3
4 . The

equation for f (η) where η = r4
/
t

1/3
4 is then

0 = 3	0
d2f

dη2
+ η

df

dη
+ 2f. (3.32)

The solution of (3.32) is f = Cη exp(−η2/6	0); imposing the definition of 	0 leads to
C = 1/3. The quantity 	0 is determined by requiring that the total mass (or density) M1

is identical to that of the initial data (�). Applying (3.31) yields � = 	
3/2
0

√
3π/2. Hence

	0 = (2�2/3π)1/3, and we obtain the similarity solution

n(r4, t4) = 1

3
t
−2/3
4 η exp

(
− η2π1/3

(12�)2/3

)
. (3.33)

12
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Equation (3.27), together with m4 = N4 and (3.29) implies

dm4

dt4
= m4(m4 − (m4 + B)) = −m4B. (3.34)

Since m4 = 	0t
−1/3
4 , we have B = 1/3t4. Let us return to the size-distribution for smaller

clusters (r = O(1)) as given by (3.29). Whilst both terms on the rhs are of the same magnitude
in ε, at small times (small t4) the concentrations increase linearly with cluster size (r); however,
in the large-time limit, the first term on the rhs of (3.29) dominates the latter; and so over this
timescale, the size distribution changes from one in which nr increases with r to one which is
uniform in r.

As a final confirmation of the scalings (3.25) we consider how this solution matches back
into the previous timescale. Towards the end of T3, we have N ∼ t

−1/3
3 ∼ ε−1/3t−1/3 as

t3 → ∞. The above solution implies (for all t4, but this includes the limit t4 → 0) that
N ∼ ε1/2t

−1/3
4 = ε1/2(ε5/2t)−1/3 = ε1/2−5/6t−1/3 = ε−1/3t−1/3.

In summary, the solution in T4, where t = ε−5/2t4, is

cr(t) = ε3/2	0

t4
+

ε3/2(r − 1)

3t4
, for r = O(1)),

cr(t) = ε3/2r

3t4
exp

(
− εr2π1/3

(12�t4)2/3

)
, for r = O(ε−1/2)),

N(t) = ε1/2

(
2�2

3πt4

)1/3

.

(3.35)

The first two match smoothly with each other, the large-r limit of the first being ε3/2r/3t4
which is identical to the limit of small ε1/2r of the second. The distribution is single-humped,
with a maximum at cluster size r = rm := ε−1/2(12�t4)

1/3/21/2π1/6. The expressions (3.35)
will also help us match forward into the next timescale, T5, and to determine the appropriate
scalings therein. The above cannot explain the full convergence to equilibrium, since at
equilibrium all concentrations have magnitudes cr = O(ε2), and the above solution (3.35)
does not asymptote to the equilibrium solution (1.25).

3.5. Timescale t5: t = O(ε−4)

The final timescale is given by

N = εN5 + ε2Ñ, t5 = ε4t, cr = ε2Cr(t5) + ε3C̃r ,

c1 = ε2m5 + ε3m̃, r5 = εr, cr = ε2C(r5, t5),
(3.36)

the last definition on the two lines being for r = O(1) and r = O(1/ε) respectively. The
equation for the number of clusters is thus

ε2 dN5

dt5
= N5(N5 − m5) + εÑ(N5 − m5) + εN5(Ñ − m̃ − m5), (3.37)

and that for the monomer concentration is

ε3 dm5

dt5
= N5(N5 − m5) + εÑ(N5 − m5) + εN5(Ñ − m̃ − m5) − εm2

5 + εN5C2. (3.38)

These give the same leading-order equation, namely N5 = m5, that is, the number of clusters
scales with the monomer concentration. Their first correction terms yield

Ñ − m̃ = m5, C2 ∼ m2
5

N5
= m5. (3.39)

13
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For r = O(1), the governing equation is Cr−1 − 2Cr + Cr+1 = 0, which implies
Cr(t5) = m5(t5) + (r − 1)β(t5). Matching the solution for C2(t5) derived above implies
β(t5) = 0; hence Cr ≡ m5 for r = O(1).

Now considering the first correction term distribution of cluster sizes for r = O(1), we
obtain C̃r−1 − 2C̃r + C̃r+1 = 0, which implies C̃r = m̃ + (r − 1)β̃(t5). Matching to the
behaviour of cr(t5) in the previous timescale (3.35), we note that β̃(t5) ∼ 1/3t5 as t5 → 0.
Matching forward to the equilibrium solution (1.25), which is approached at the end of T5,
we find β̃(t5) → −� as t5 → ∞.

Putting the ansatzs (3.36) into (d/dt)(N − c1), at leading order, we obtain m2
5 = N5C2

which is already known. The first correction term yields

dm5

dt5
= m5(−β̃ − m5). (3.40)

Hence m5 converges to � as t5 → ∞.
The distribution of clusters at large aggregation numbers (r = r5/ε, r5 = O(1)) is

governed by the kinetic equation

1

m5

∂C

∂t5
= ∂2C

∂r5
2

+
∂C

∂r5
. (3.41)

Following the definitions (3.36) we have

N5 =
∫ ∞

0
C(r5, t5) dr5, � =

∫ ∞

0
r5C(r5, t5) dr5. (3.42)

Density conservation (d�/dt = 0) again confirms the leading-order equation N5 = m5.
Matching to the inner solution r = O(1), equivalent to r5 = O(ε) implies that β̃(t5) =
∂C/∂r5|r5=0.

Solving for the equilibrium solution of (3.41) we obtain C = A + B e−r5 , for suitable
constants A,B. For finite mass, we require A = 0, and imposing the initial mass on the
system, we obtain B = �. This time-independent solution, cr ∼ ε2� e−rε, corresponds to
the equilibrium solution of the original system (1.25). At equilibrium the majority of mass is
in clusters of extremely large sizes (typical size 〈r〉 ∼ (�/N) ∼ (1/ε)) thus the equilibrium
solution can be simplified to

ceq
r = ε2� e−εr forr = O(1/ε), N eq ∼ �ε − �ε2. (3.43)

Note that the typical cluster size, 1/ε, is not dependent on the total mass in the system (�),
unlike the equilibrium solution of the original Becker–Döring system in which �/N = √

�/ε

(1.27).

3.6. Summary

As a means of summarizing the behaviour through the timescales outlined above, let us
calculate the free energy at various stages of the evolution. The form of the free energy (1.24)
is more natural than the standard expression (1.29); this is one motivation for preferring the
modified system (1.5)–(1.7) over the original formulation (1.1). At equilibrium the free energy
takes the value

Veq = � log
ε

1 + ε
, (3.44)

which is negative and asymptotically large. In what follows, to see how quickly the free energy
reduces, we consider V − Veq.

14
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At t = 0, the initial data (3.1) together with (1.11) imply that V0 = 0 and so

V0 − Veq = −� log
ε

1 + ε
∼ −� log ε + �ε + O(ε2). (3.45)

Thus there is a large free energy difference available.
At the end of T2 (at which point the size-distribution is almost identical to that at the end

of T1), we have, from (3.10),

V2 − Veq = �

e

( ∞∑
r=1

(r − 1)

r!
log

(r − 1)

r!
− log ε + e log(1 + ε)

)
∼ −�

e
log ε, (3.46)

so over the first timescale, the free energy difference drops to a factor of 1/e of its initial value
but retains a similar order of magnitude.

During T3 most of the remainder of the free energy difference is used up, and there is only
an extremely small amount of free energy remaining to be lost between the configuration at
the end of T3 (3.24) and the equilibrium solution (1.25). The form of the solution towards the
end of T3 (3.24) is similar to that in the whole of timescale T4. In T4, we have V4 ∼ � log ε

hence V4 ∼ Veq and the difference in free energy between T4 and equilibrium is small and
decreasing algebraically in time

V4 − Veq ∼ ε1/2

(
2�2

3πt4

)1/3 [
3

2
log

1

ε
+ log

(
2t4(12π�)1/3) − 3

2
γ

]
+ O(ε), (3.47)

where γ is Euler’s constant (γ ≈ 0.5772 . . .) [1].
In T5, we have V5 ∼ � log ε, with correction terms which yield

V5 − Veq ∼ (� − m5(t5))ε log ε + ε

(
� +

∫ ∞

r5=0
C(r5, t5) log C(r5, t5) dr5 − m5 log m5

)
,(3.48)

hence, over this timescale, the dominant change in free energy is due to a reduction in the
monomer concentration (ε2m5) to the equilibrium value (ε2�) and this is driven by a free
energy gradient of size V5 − Veq = O(ε log ε).

4. Conclusions

The aim of this paper was to construct an asymptotic solution to a simple example of the
modified Becker–Döring system proposed by Dreyer and Duderstadt [8]. We have analysed
two cases of size-independent aggregation and fragmentation rates, first, the simpler constant
monomer concentration case, and then the constant total mass case which is more complex
due to the monomer concentration being unknown; this makes the problem both nonlinear
and nonlocal in aggregation number. The structure of the asymptotic solution in these two
examples is similar. However the presence of the number of clusters in the fragmentation term
(1.7) introduces a number of differences between the modified system analysed here and the
original formulation considered in [22].

Firstly the constant monomer concentration appears not to have a Lyapunov function
(1.20) due to the fragmentation rate being time-dependent. Secondly, the constant monomer
concentration has a unique steady-state solution, which is the equilibrium solution; this is
in contrast with the original Becker–Döring system which has a one-parameter family of
steady-state solutions (which includes the equilibrium solution as a special case).

Importantly, the more physically-relevant and realistic constant mass formulation of the
problem passes through a greater range of timescales than the standard system. Whilst the
shape of the solution is similar in the penultimate timescale, during which the size-distribution
evolves according to a self-similar profile, the kinetics are less orthodox, the typical cluster size
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scales with t1/3 as opposed to t1/2 which is found in the asymptotic analysis of the standard
Becker–Döring formulation. The evolution of the free energy through the five timescales
(3.45)–(3.48) follows a similar progression to the original system (1.32)–(1.34). We should
expect to find even more exotic range of timescales and behaviours if size-dependent rate
coefficients (ar , br) were used.

In [13] the Becker–Döring equations with rate coefficients which depend on size in an
algebraic fashion are analysed. The constant monomer formulation is analysed using a variety
of asymptotic techniques. Using WKBJ methods, five cases have been identified and the large-
time behaviour of 23 subcases described. Similar techniques are applicable to the modified
Becker–Döring model of Dreyer and Duderstadt considered here; however, the constant mass
case is slightly more complex. With rates which depend in an algebraic fashion on cluster size,
it should be possible to identify the sequence of relevant timescales and derive simplifying
descriptions. However, it may not be possible to quote explicit solutions as have been given
here. It is hoped that these issues will be the subject of future work.
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constants J. Phys. A: Math. Gen. 35 1357–80
[14] Neu J C, Bonilla L L and Carpio A 2005 Igniting homogeneous nucleation Phys. Rev. E 71 021601
[15] Niethammer B 2003 On the evolution of large clusters in the Becker–Döring model J. Nonlinear Sci. 13 115–55
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